CONTROL ENGINEERING LABORATORY Evolutionary algorithms in nonlinear model identification
نویسندگان
چکیده
Evolutionary algorithms are optimization methods which basic idea lies in biological evolution. They suit well for large and complex optimization problems. In this study, genetic algorithms and differential evolution are used for identifying the parameters of the nonlinear fuel cell model. Different versions of the algorithms are used to compare the methods and their available operators. The problem with the studied algorithms is the parameters that regulate the development of the population. In this report, some suitable methodology is proposed for defining appropriate tuning parameters for the used algorithms. The results show that the used methods suit well for nonlinear parameter identification but that differential evolution performs a bit better on average. The results also show that the studied identification problem has a lot of local minima that are very close to each other and thus the optimization problem is very challenging.
منابع مشابه
Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملA Comparative Study of Four Evolutionary Algorithms for Economic and Economic-Statistical Designs of MEWMA Control Charts
The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function ...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملEffects of Mathematical Model of MR Damper on Its Control Performance; A Nonlinear Comparative Study
In this paper, the effect of mathematical representation method of an MR damper on the performance of control algorithm is investigated. The most exact and common Maxwel Nonlinear Slider (MNS) and modified Bouc-Wen hysteretic models are employed through a nonlinear comparatve numerical study. In many of semi-active control algorithms, a mathematical modelling method is required for determinig ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010